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S T R E S S E D - C O N S T R U C T I O N  R I G I D I T Y  C H A R A C T E R I S T I C S  

A. G. Kolpakov UDC 539.3 

It has been shown [1-5] that the averaging method must be applied directly to the initial body in order to incorporate 
correctly the preliminary (initial) stresses if the body is inhomogeneous. In [1-5], this fact is merely noted and illustrated on 

examples. Methods of realizing the theoretical results are not considered in [1-5] for particular cases, except in [4], which deals 

with layered media. 
Here a method of incorporating the initial stresses in application to Finite-dimensional constructions (trusses, frames, 

and so on) is given. Working formulas are derived that reduce the treatment to a system of linear equations. One incorporates 

the preliminary (initial) stresses, which are caused in the main by the weight, as an important feature in considering the stability 
and dynamic properties. 

1. Formulation and Information on A:~raging for Inhomogeneous Stressed Media. 

Consider an inhomogeneous elastic body having a periodic structure, which has periodicity cell PC, Pc, which is 
subjected to forces F, which cause displacements v ~ and stresses aije(0)(ve), which are called the preliminary or initial ones. 

In addition to the above, the body may be subject to additional displacements u e. The general description of a body containing 

initial stresses has been considered in [6], and the following have been derived (Fig. i) for describing the basic (initial) state: 

L (0)v" = F S Q,, a~(0)(r = 0 on F ,  v" = 0 on r2; (1.1) 

and for determining the additional displacements: 

L ( a ) u "  = u" = p ~inQ~, a~(a)(ff)nj 0 on F ,  u' = 0 on F z. (1.2) 

Here Le(a)v = [(Cijkt(X/e ) + aike(a)(Ve)~Jl)Vk,l] j is the elasticity-theory operator that incorporates the initial stresses [6], while 

Le(0)u = [cijk/(x/e)uk,/]j is that operator without the initial stresses, 
i . ~ ( a ) ( u )  = ( c k , ( x / O  + ~(X)ak)Uk.  ,, 

with a~(0)(u). = %k,(x/e)u, .  ., the stresses, a',j = a~(0)(r %k,(x/e) the elastic constants, p(x/e)  the density (these functions 

are periodic in x with PC P~), and sji is the Kronecker delta. Figure 1 shows the region Q and its boundaries 1`r and 1" 2, with 
n the normal to aQe. 

From [7-13], this body with its periodic structure for e --, 0 can be replaced by a homogeneous body similar to it in 
mechanical behavior. Correspondingly, the solutions to Eqs. (1.1) and (1.2) may be approximated by ones of  the following 
form [ 1-5]: 

L(0)v = # F  in (2, %(0)n~ = 0 on r~, v = 0 on r2; 

M 

L ( a ) u  = ~pu,, in (2, a~(a)n, = 0 on r~,  u = 0 on r 2, 

(1.3) 

(1.4) 
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Fig. 1 

in which (I~(tr)u) i = (a i jk / ( t r )Uk, / ) j  (for crij~ = 0 we get an averaged treatment for an unstressed body), with oii(~r)(u) = 

aijkl(O)Ukl the averaged stresses, %j = ~j(O)(v); ( .)  = (rues P , ) -~f  �9 dx "= (mes px)-t f .  dy, y = x / e  mean over the PC 

(Fig. 1), and ~ the volume content of the material (/~ = 1 for a monolithic body and 0 < # < 1 for a porous one): ~ = mes 
'I 'l/mes Pt- 

From [101, 

(~)  = Sq(O)(v). (1.5) 

In the general ease (see [1-5, 8, 11] and examples there), 

" i a jk~(cr ) ~ %,(0)  + oU(0)(v)5 k. (1.6) 

The right-hancL side in Eq. (1.6) arises when one uses what is called intermediate averaging, which is carried out as 
follows: one averages over the inhomogeneous body free from stresses and calculates the averaged stresses in it and then one 

compiles an operator that should arise [6] in describing a real homogeneous body having those elastic constants and initial 

stresses. The intermediate averaging leads in particular to a phenomenological approach to an inhomogeneons body. It follows 
from Eq. (1.6) that intermediate averaging in general gives an incorrect result. Mathematically, this is due to the specific 
features of  the G limit to a sum [14], and from the mechanical viewpoint it is explained by the occurrence of a general state 

of stress and strain when homogeneous averaged stresses are applied in an inhomogeneous medium. 

The averaging procedure thus in general does not preserve the structure of the operator L~(o) from linearized elasticity 
theory for bodies containing initial stresses. 

2. Small Initial Stresses. 

Here stressed constructions are considered. There are naturally constraints on the initial (preliminary) stresses, i.e., 

oij 8 will not exceed the strength of the material. In turn, the ultimate strength for a real material is small by comparison with 
the elastic constants [14], so the case is that of small initial stresses, for which a formula has been derived [1, 5] for the 
coefficients in the averaged operator: 

%~(0) = a0,,(0 ) + ~r,d: + / ~ , ( ~ ,  N ~)  = %,,(0) + %,5', + (o;,N~p.,,~?r + ce~dV'~. ~ + ~ , . ' ~ ) .  (2.1) 

Note 2.1. Formula (2.1) incorporates the fact that (~ )  = ~(0) (v)  ~see [10], where the normalization used in [10] in 

defining the mean should be replaced by the standard one to derive Eq. (1.5)), while the subscript, iy denotes OlOy i, where 
y = x/e are the local variables. 

Formula (2.1) has been derived by expanding the general formula for aijkl(O) from [1, 5] in powers of  the small 
parameter olc (o and c are the characteristic values of the initial stresses eije and the elastic constants Cijkt ) and then retaining 
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the linear term. If necessary, one can retain higher-order terms (see details in [1]). The general formula for aijkl(,r) has been 
given in [1, 5] and is not given here because it is not used directly in the subsequent steps. 

The functions N aa in Eq. (2.1) are solutions to the cellular problem CP in elasticity theory for a body free from initial 

stresses (see 7-9, 12]): 

k (Cijkt(y)(A~k # + y=~#),~),~ ---- 0 i n  PC ~P,_ = e-tO (2.2) 

together with the condition for the periodicity of N '~ and the normalization condition (N '~#) = 0 (the latter can be replaced 
by any other condition that eliminates displacement of the body as a solid body). 

It follows from [7-10] that the initial stresses crije are related to the averaged initial stresses by 

,, (c,,,~ + c,,,,,,v ~..~,)~... = (%~ + c,,~."~,)Jo,..o~. (2.3) 

(Jc~/~rnn is a tensor inverse to aijkl(0), the averaged compliance tensor). 
Note 2.2. The local stresses aij e satisfy 

o" = 0 ,  i/./y (2.4) 

which can be derived by differentiating Eq. (2.3) with respect to the local variables and using Eq. (2.2). The initial-stress tensor 
is symmetrical, so we integrate by parts to get 

f Oq/V~,.~dY = f ' ,p = _  % ~ . J y  f ~ + f ~ = 0 
~I 4'1 4'1 ~ 

(n 1 is the normal to 0@1). The first integral in the above sum is equal to zero by virtue of Eq. (2.4), while the second (with 
respect to a@l) is so by virtue of the periodicity of N '~# and atqe and because the vectors for the normals to opposite faces of 
the PC are opposite in direction. Then Eq. (2. I) becomes 

(2.5) 

This formula is the basic one for subsequent studies. 

It follows from Eq. (2.2) by virtue of the elastic-constant symmetry [14] that N ~a are symmetrical with respect to the 
superscripts, while the unsymmetry in aijk/(tr) is associated only with the ~'ikSJl term (the aijkt(0) have [7-10] the symmetries 

occurring in the elastic constants). The conclusion applies only to small initial stresses (see some formulas for not very small 
initial stresses in [4, 5]). 

We substitute the last expression from Eq. (2.3) into Eq. (2.5) in place of trije to get 

( 7  t " ,3 l,,u( ,,,,, N 'r = (o~mN~/.m,N'~.~) = lou,,,(b7 )J,r . . . .  (2.6) 

in which 

(2.7) 

with summation with respect to the repeating subscripts. 

3. Structures Made of Rectilinear of Planar Elements. 

We consider a construction of periodic structure and formed of beams, plates, and so on. Such a structure is a 
particular ease of a highly porous framework structure [2, 10, 11]. In that case, Eq. (2.2) can be replaced as proposed in [12, 
13] by means of methods from CP theory for the corresponding cellular construction CC formed by a system of beams and/or 
plates. 
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We consider Eq. (2.2). It can be considered as a problem on U ' ~  = N ' ~  + y,~e~, where CP theory for beams/plates 

is [12, 13] formulated naturally in terms of U ' ~  in the sense that the kinematic hypotheses link the displacements of the CC 

elements to U '~/~, as (2.2) shows. Then we get (2.7) in terms of Uc'~: 

z,,,,(o.o, ~") = ( , ,o . (~ , .  - ~'.)(~,,, * ' 
(3.1) 

and correspondingly 

~,,,o,(:) (~,~,(~:,,, _ ~::,)(~, - ~*:,) 0,, s~) + - - = (,.~- c~:(u~p., c3~cY) (u,:.~, ~)). (3.2) 

Expanding the parentheses in Eq. (3.2) does not simplify the formula. 
The theory of beams/plates establishes a relation between the displacements of  the elements (considered as one- 

dimensional or two-dimensional objects) and U a# (the displacements of the elements considered as three-dimensional bodies) 

in the simplest form in the natural coordinate system linked to the elements [15]. We introduce the {l, n, Z}l coordinate system 

linked to body I. Vector n is taken as the vector for the normal for beams and plates, while vector l is the direction vector for 

beams. 
Formulas (3.1) and (3.2) are written as follows in a coordinate system linked to element I (3,a i denote the direction {l, 

n, r}l coordinate system relative to the coordinate system Oyly2y 3, i = 1, 2, 3, a = l, n, r): 

/0k t (J ,  N", a) = (~ , f~ / , , v l f~ . ,u  - * ' ~ ' ' c :  ,,k, , ~  k 'or" :) '" 
(3.3) 

(3.4) 

Here the subscripts run through the values n, l, and z and the superscripts through the values 1, 2, and 3. 

The mean over the PC P1 in the present case is 
N 

( . )  = fmes/'~)-~ ~ f �9 ay, 
I = I  L 1 

where N is the number of  elements in the CC; the integration is taken over the region L I occupied by element I. The integrals 

can be calculated explicitly on the basis of the hypotheses from beam/plate theory. 
3.1. Beam Structures  (Frames).  We write the following formulas for the stresses and strains [15-17] in the coordinate 

system linked to beam I (the beam material is taken as homogeneous and isotropic, and the beam has a constant cross section: 

O'u~ 0, O'a/,= 0 for a b ~ l l ,  

~ 0, /f~.,, = U~f, = ?v/.~l.~ 1 for any- a ,  ft. (3.5) 
U~fb='0 for a ~  o ] 

We represent Eqs. (3.3) and (3.4) on the basis of  Eqs. (3.5) as 

N 
a" ,, ".i U~l.~) + Y i ~ Y ~  ] d l d n d r .  ~,~( _ ,  re') = (mese,)-I ~ f ~ t r 1 6 2  r ,~(~, ,  + 

t ~ 1  L l (3.6) 
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As in the present case ~rtl e = babVa,b (compare with (2.3)), and bab = E1U/,/ab (E I is Y0ung's modulus for the material of beam 
I), we have 

N 

~ , b ( N  ~) (mesP1)- l~  f ~ ~ ~ " ~ ~ U~.~) + yi~Z:~U~.]]dldndv:. = e ,  t c ,  y , . , G  - + . 
I ~ 1  L 

(3 .7)  

The stresses and strains in Eqs. (3.5) are made up of stretching-compression strains and bending ones and take the form A + 
Bn + Cr, where A, B, C = const. One calculates the expressions in Eqs. (3.5) by integrating functions of the form nkr L over 

the cross section of the beam. The corresponding kinematic hypotheses must be used if the beams are not thin. 
3.2. Periodic-Structure Truss. Let the bending stresses and strains in the CC be negligible. Then at/~, Ud,d ab (d = 

l, n, r) in Eqs. (3.5)-(3.7) are constants [15-17], so Eqs. (3.6) and (3.7) become 

N 

a ~ i " a  . /~a(~- '  U~e) = (mesPl)-~ ~ N,[e~a4 - Y , ~ ( 4  + e~ a) + Y;gYt~l l t ,  
1=1 

N 

= tel e, e; - y, ~e ,  (e; + e7 a) + y',gy, ~ 1l,, 
l f f i l  

( 3 . 8 )  

(3.9) 

in which N I is the axial force (ale multiplied by the cross-sectional area of the beam), eiiJ the axial strain, l I the length, and 
~I the tensional rigidity of rod I. 

3.3. Construction Containing Plates. When one considers the plates, the analysis may be performed by analogy with 
the above, with the stresses and strains determined in accordance with the kinematic hypotheses, after which the integration 
over the volumes of the plates may be performed explicitly. 

3.4. Semlmonocoque Constructions. Let the rod framework in a CC take up the tension/compression (see See. 3.2), 
while the plates work only in shear [6]. Then in a coordinate system linked to a plate 

a~ = const } a~ = 0 
N'~.o = const = F '~ for ab = In, nl, N'~.~ = 0J for ab ~ In, nl. 

As a result, for the plates 

N 

r e ' )  = ( m e s e , ) - I  S ,  f r T , " U  - " ~ ~ ' ~ a F,~, ~,, - ~a~"ng + ~,/~,~S,6~ ! ~ ,  a, b = l, n. (3.10) 

Here S t are the shearing forces (o'n/t multiplied by the plate thickness), Fi"fl the shearing strain, and ~ I  the area of plate I 
in plan. The summation in Eq. (3.10) is takert over the number of plates in the CC. One should add Eq. (3.10) to Eq. (3.8) 
to get the final expression for/ij,,fl. 

4. Methods of Solving the CP. 

The most general method of determining aije and N '~fl is to solve Eq. (2.2) numerically. Examples have been given 
for instance in [18] for the use of the Finite-element method. However, if the CC is formed by thin-walled elements and has 
complicated geometry, standard numerical methods are ineffective and it is logical to use methods that explicitly incorporate 
the thin walls of the CC elements. The [12, 13] approach is one such method. The method proposed there involves replacing 
the CP in elasticity theory by the CP in the theory of beams/plates and agrees with the analysis method for finite-dimensional 
structures that has been thoroughly developed in the sense of theoretical analysis and in the sense of software. We consider 

applying the last method to the CP. We introduce the generalized displacements of the CC nodes (u i, m 1 . . . .  ), in which u I, 
... are the displacements proper and m 1 . . . .  are the residual components of the generalized-displacement vector (e.g., the angles 
of rotation for the ends of the beams and so on). The CP takes the form 

314 



y, 

Fig. 2 

TW ~ = 0 at the interior nodes (4.1) 

(tW~#),+ = (tW~#),_ at the boundary nodes (4.2) 

(W ~ - y,,ep),+ = (W ~162 - y,,ea)a_ at the boundary nodes (4.3) 

N N 

E W e 1  - Y ~ , e p = E m ~  a =  O, 
121 I=I 

_- (uT,  ..... u;' ,  m : ' ) .  

(4.4) 

Here (4.1) are the equations of equilibrium (T is the influence matrix) [6, 19]; Eqs. (4.2) and (4.3) are the periodicity 

conditions (the subscripts a +  and a -  denote those corresponding one to the other at opposite faces of  the PC); tW ~t~ are the 

forces at the boundary nodes; Eq. (4.4) is the analog of (N '~ts) = 0; N the number of CC elements; and y~e~ takes the values 

at the nodes of the PC. The Eqs. (4.1)-(4.4) treatment is a system of linear algebraic equations that has a unique solution by 
virtue of condition (4.4). 

One solves Eqs. (4.1)-(4.4) to recover U sa in the regions L I occupied by the elements on the basis of the kinematic 

hypotheses, and one then calculates/ijkl or lijk/ot fl in accordance with the above formulas. For typical constructional elements 
such as rods, beams, and plates, one can obtain explicit expressions for lijkl and lijkk,# in terms of the generalized displacements 
of the ends. 

The following formula applies: 

%~ = ~ .  (tW*a)" (4.5) 
1 

where the summation is taken over the nodes on face j of the PC. 

To calculate lijkt and lijkt~x#, which characterize the effects from the initial stresses in a finite-dimensional structure, 
it is thus effective to use a matrix method [6, 19]. 

Note 4.1. The matrix method can be applied to the construction as a whole (see for example [6] of incorporating the 
initial stresses and strains in a structure with finite dimensions). A large linear-equation system arises, which can be analyzed 

by analogs of  the averaging method. When there is any reason to assume that the construction does not permit of  an averaged 
description, one can use direct methods of examining the equation system thereby arising. 

5. Examples. 

Example  1 (X-shaped PC, Fig. 2). The solution to the CP for the beam CC shown in Fig. 2 can be obtained in an 
explicit form. We use the summary of the CC and consider one beam (1/4 of  the CC). To derive U 11, one needs to solve the 
bending-tension problem for that beam subject to the edge conditions 

w'(O) = w' ( l . )  = 6(0)  = O, w( l . )  = o( l . ) ,  w( l . )  + o ( l . )  = 1 / V ~ ,  

in which w is the normal deflection and v the axial displacement (in the local coordinate system), with the coordinate l reckoned 
from zero (the center of  the CC) and l, the beam length. 

The classical equations [15] give 

I 3 1 
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Fig. 3 

Some change in the methods given in [12, 12] is needed to link up the elements at the faces of the PC that appear in two faces 

at once (Fig. 2). In the present case, by virtue of the CC symmetry, the vectors for the normal forces are normal to the faces 

of the PC and Eq. (4.5) gives 

am1(0 ) = 2(N + Q ) / v ~  = ~ + 12D, 
a22n(0 ) = 2(N - Q)/vt~ = ~ _ 12D (5.1) 

(~and D are the rigidities of the beam in tension and bending, while N and Q are the axial and shearing forces [15]). 

The strains and stresses are as follows in the beam considered as a three-dimensional body [15-17] in the {l, n, r} local 

coordinate system: 

N t l  = v '  + n w "  = 1 6 1 -  3 / .  ',' " + "  

N n = N it = - v N ~  1 N n ,i, = 0 for a ;r b,  n ,  n T~ a ,  b 

a,; = EN,':,, ~ = 0 for ab ~e ll. 

(5.2) 

We then get Eqs. (3.6) and (3.7) containing the Nt, t 'x# and trt,: given by Eqs. (5.2). 

Let the averaged stress be bll ;~ 0, bij = 0 for ij # 11. From Eqs. (5.1) we calculate the averaged strains (i.e., 

JaBmn~rmn): 

a l l  l 1 ( 0 )  . a 1 1 2 2 ( 0 )  - 
ell - A all~ e22 -- A O'II~ 

where zX = 24gD; eij = 0 for ij # 11.22. The value of  1/4 1111111 for 1/4 of the CC (i.e., a beam) is 

t ,  h/2 
1 

e f  f t(N:',) 3 ,,,, ; - (N H~2 + N~ 1, ]alan. 
o -a/2 

We substitute here for N t f l  from Eq. (5.2) and integrate to get for the entire CC that 

5 -  2V~ $- 2 v ~  
lmm = 4 3 ~  ~ l .  - ~ ~' l . .  

To derive/111122, it is sufficient to note that one can use the CC symmetry and calculate N 22 by analogy with N 11 in 
a coordinate system turned through 90 ~ so for a beam 

l 6 l -  at. 
N ~ = - ~ - ~ -  n 2~. ' 

and to calculate lt11122 one should compute the integral 

t .  h/2 i__ N2~ 
E l f  22 , 2  'V 22Nu+ ldldn. o_h/2INj.,(N;.,) - ' , . r  "1,, 2 "'"' 

Integration gives 
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S -  zv~ 
t . m  2 - ~ dr. 

Finally, for this case we get 

.5 - 2Vt2 ~ + 1 2 0  ] b l l ,  
ann(a) = ~" + 12D + 8 24-------~- + 2hV~ 

.1 
5 - 2~/'2 ~3" + I 2 O  - 

aun(e ) = ~' - 12D + 8 2 4 0  O"11 = a2att(~ 

5 -  2V~ d ' +  12D . 
a2a22(o) = ~ + 12D + 8 24D all" 

(5.3) 

The last equation follows from the CC symmetry. 
Intermediate averaging will give the following values for the quantities from Eqs. (5.3): 

dr + 12D + alx, ~' - 12D, ~" + 12D. (5.4) 

The discrepancies between Eqs. (5.3) and (5.4) are of the order of D (D + h for allll(a)), because the bending strains are 

responsible for the differences between the strains corresponding to U aB (i.e., the local strains) and the homogeneous strains 

corresponding to the displacement Y~ea. 

Example 2 (rectangular PC, Fig. 3). Let the averaged load be directed along the axis (e.g., the weight). Then with 

cxB = 11.22 we have U aB = yaeu~, and so  lijk/(Crmn ~, N ~/B) = 0. 
Then the difference between/ijk/(trmn e, NaB) and zero is due to discrepancies between the local strains defined 

from the CP solution and the homogeneous strains corresponding to the global ones. 

6. Appf icaf ion .  

6.1. Vibrations in Stressed Structures. The equations for the natural oscillations are derived from (1.2) by replacing 

Putt~ by k~2pu ~ for the initial construction and (p)u,t t by X2(p)u for the averaged one. Here h e and h are the natural frequencies 
for the real and averaged constructions. The f'mite sets of eigenvalues in a frame converge [13, 14] for e -~ 0 when one 

incorporates the multiplicities of the initial and averaged treatments (see [20] for details) provided that the solution to the initial 
and averaged treatments in Eqs. (1.2) and (1.4) converge. The basis may be given by analogy with [21-24]. 

6.2. Planar Waves. The initial problem does not allow solution as plane waves in the general case, while such 
solutions exist for the averaged problem. By virtue of (1.4), the plane waves are described by aijt/(a)njn/X k = c2(P)Xi . 

Note 6.1. It is assumed above that the operators L~(a) and I~,(a) have compact inverses defined on all HI(Qe) and HI(Q) 

correspondingly. That condition may be violated. In particular, there is a question of stability loss in a stressed construction 
with respect to averaged forms. One can say in advance that intermediate averaging will be inapplicable in that case. 

Note 6.2. The initial stresses for a thin body can sometimes be averaged within the framework of beam theory. The 

decisive part is played by the order of the initial stresses by comparison with the beam diameter [25, 26]. 

7. Conclus ions .  

1. The averaging method should be applied directly to the initial treatment in considering stressed three-dimensional 
constructions. 

2. The working formulas derived here for initial stresses small by comparison with the elastic constants are applicable 
for most artificial structures. 
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